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ABSTRACT 

 
For a machined mild steel material of certain physical and chemical properties, the surface roughness, prescribed in four 
different parameters each of which is desired to be as minimal as possible, is known to be a function of the machining 
(cutting) parameters including cutting speed (m/min), feed rate (mm/rev) and depth of cut (mm).This functional 
relationship between each of the roughness parameters and machining parameters must be represented by a model and 
subsequently optimized to determine the optimal values of the machining parameters that minimize the parameters of 
surface roughness. In Response Surface Methodology (RSM), Model Robust Regression 2 (MRR2) is a good choice of a 
statistical model. MRR2 is a hybrid model obtained from the combination of both the classical parametric Ordinary 
Least Squares (OLS) and a nonparametric Local Linear Regression (LLR) via a mixing parameter. LLR portion of 
MRR2 utilizes kernel weights derived from the simplified product Gaussian function. A motivation for this paper is 
derived from the fact that, since the OLS residuals are the equivalence of the response that the LLR portion is designed 
to estimate, then the kernel weight at each data point should reflect the relative magnitude of the OLS residual at each 
data point. In order to improve on the performance of MRR2, we therefore propose a robustification of the kernel 
weights using two different linearly transformed residuals vectors from the OLS component. Data from real 
experiments, statistical literature as well as simulation study were analyzed. Comparison of results shows that the MRR2 
that utilizes the proposed robustified kernel weights outperforms OLS, LLR and the MRR2 that utilizes existing kernel 
weights by considerably wide margins. For the minimization of surface roughness of a machined mild steel material 
(EN10) in particular, the optimal cutting speed, feed rate and depth of cut of 254.3979m/min, 0.1774mm/rev and 
0.4388mm, respectively, obtained by MRR2 utilizing one of the proposed techniques for robustifying kernel weights 
gave a desirability of 99.4%. This implies that the optimal value of each of the four roughness parameters collectively 
meets 99.4% of the process requirements. 
 
Keywords: Semi-parametric regression, response surface methodology, multiple response optimization, kernel weights, 
surface roughness. 
 
INTRODUCTION 
 
The focus of this paper is on the application of response 
surface methodology (RSM) in the determination of 
optimal setting of one or more explanatory variables (e.g. 
the cutting parameters) that optimizes a given response 
variable (e.g. surface roughness). 
 
Response Surface Methodology (RSM) is a collection of 
mathematical techniques employed by statisticians and 
engineers in the modeling and analysis of problems in 
which a response of interest is influenced by one or more 
explanatory variables (Box and Wilson, 1951; Myers et 
al., 2009). The ultimate goal of RSM is to determine the 
value(s) of the explanatory variables that will optimize 
response(s) via a predictive model(s) fitted to the small 

sample data generated from a designed experiment (Wan 
and Birch, 2011). 
 
In machining processes, metal cutting happens to be one 
of the most widely used manufacturing processes in 
engineering industries and factories (Reddy et al., 2011). 
Metal cutting operation plays an important role in 
reducing a particular work piece from the original stock 
to the desired shape and dimension with certain level of 
surface roughness (Reddy and Mallampati, 2012).  
 
Surface roughness is a common criterion for evaluating 
the quality of a product. It affects factors such as friction, 
ease of lubricant, electrical and thermal conductivity, 
geometry tolerance, etc (Rodriques et al., 2012; Sharma 
et al., 2012; Makadia and Nanavati, 2013). Surface 
roughness has been found to influence properties such as 
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wear resistance and fatigue strength and the functionality 
of the machined components (Pradeep et al., 2008). 
 
Microscopic examination of machined metallic surfaces 
reveals projections which consist of crests (peaks) and 
troughs (valleys), of varying distances, heights and 
depths, resulting in irregularities, protuberances and 
ridges on the surface of the machined part. The 
differences and distances between these crests and 
troughs give a measure of the surface texture or more 
specifically roughness of the surface. 
 
For the purpose of this study, four aspects of surface 
roughness of the mild steel material were measured and 
recorded in four parameters, namely, the arithmetic total 
average roughness (ܴ௔), the average distance between the 
highest peak and lowest valley in each length of test 
piece(ܴ௭),the root mean square average of the profile 
heights over the evaluation length (ܴ௤), and the maximum 
height of the profile (ܴ௧), all in microns (ߤm). 
 
The interplay of different values of the cutting conditions 
such as cutting speed, feed rate and deep of cut results in 
different values of surface roughness of the work piece. 
Hence, in order to achieve the economic objective of a 
machining process, the optimal cutting conditions for a 
material of a given specification (including the physical 
and chemical properties) must be determined. To do this 
using RSM, predictive empirical model is established via 
data generated from a statistically designed experiment 
such as Central Composite Design (CCD) and Box-
Behken Design. Subsequently, the empirical model so 
obtained is interfaced with an optimization program to get 
the setting cutting parameters that minimize the surface 
roughness for a particular material (Del Castillo, 2007). 
 
Accurately determined optimal cutting conditions and 
surface roughness provides better opportunity for a 
significant improvement in the quality of manufactured 
components in terms of wear resistance, fatigue strength, 
ease of lubricant, etc, and an overall reduction in 
manufacturing costs as a result of reduction in material 
wastage, reduction in man-hour, power consumption, etc. 
Knowledge about optimal cutting conditions play a 
significant role in the efficient use of machines and 
machine tools and motivates machinists to handle them as 
efficiently as possible in order to maximize returns from 
them (Babu et al., 2011). 
 
As earlier stated, before the optimization phase of RSM, 
the functional relationship between the response variable 
y and the ݇ explanatory variables ݔଵ, ,ଶݔ  … , ௞ݔ , must be 
established (Pickle et al., 2008). 
 
A first step towards this goal is to assume that this 
relationship is in a mathematical form represented as: 

௜ݕ = ݂൫ݔ௜ଵ,  ݔ௜ଶ, … , ௜௞൯ݔ + ௜ߝ ,    ݅ = 1,2, … , ݊  (1) 
 
where the mean function ݂ denotes the true but unknown 
relationship between the response variable and the ݇ 
explanatory variables, ݕ௜ , ݅ = 1,2, … , ݊, is the value of the 
response at ݅th data point, ݔ௜௝, ݅ = 1,2, … , ݊, ݆ =
1,2, . . . , ݇, denotes the value of the ݆௧௛ explanatory 
variable at the ݅௧௛ data point, ߝ௜ , ݅ = 1,2, … , ݊, is the error 
term at the ݅௧௛ data point, where ε ~ ܰ(0, ,(ଶߪ ܽ݊݀ ݊ is 
the sample size (Wan and Birch, 2011). 
 
Next is to choose a regression model to use for estimating 
the functional form of ݂ in (1). Regression methods 
applied in RSM include OLS, LLR and MRR2 
(Montgomery 2009; He et al., 2012). 
 
OLS model comes handy in scenarios where the 
researcher has perfect knowledge of a polynomial that 
adequately approximates ݂ in (1) with a very high degree 
of accuracy (Pickle et al., 2008; Shah et al., 2004).  
 
The OLS estimate,ݕො௜

(ை௅ௌ), of the response in the ݅௧௛ data 
point is given as:  

ො௜ݕ
(ை௅ௌ) =  (2)   ,࢟ࢀࢄ૚ି(ࢄࢀࢄ)࢏࢞

 
where ࢟ is a ݊ × 1 vector of response, ܆ is a n × p model 
matrix, ݌ is the number of model parameters 
(coefficients) in the assumed model, ࢀࢄis the transpose of 
the matrix ܆, and ࢏࢞ is the ݅௧௛ row  vector of the matrix ࢄ 
(Pickle et al., 2008; Edionwe and Mbegbu, 2014).   
 
In matrix notation, the vector of OLS estimated response 
is expressed as:  

(ࡿࡸࡻ)ෝ࢟ =

⎣
⎢
⎢
⎢
૚ࢎ⎡

(ࡿࡸࡻ)

૛ࢎ
(ࡿࡸࡻ)

⋮
࢔ࢎ

⎦(ࡿࡸࡻ)
⎥
⎥
⎥
⎤

࢟ =  (3)   ,࢟(ࡿࡸࡻ)ࡴ

 
where the vector ࢏ࢎ

(ࡿࡸࡻ) =  is the ݅௧௛ row ofࢀࢄ૚ି(ࢄࢀࢄ)࢏࢞
the ݊ × ݊ OLS Hat matrix (ࡿࡸࡻ)ࡴ. 
 
OLS is robust to the polynomial specified to approximate 
݂ in (1) but requires several assumptions to be met for 
valid interpretation of its parameter estimates. 
Furthermore, it performs poorly if the assumed 
polynomial model is inadequate for the data at hand (Wan 
and Birch, 2011).  
 
Mathematically, LLR estimate, ݕො௜

(௅௅ோ)of ݕ௜, is given as: 
ො௜ݕ

(௅௅ோ) = ࢟࢏ࢃࢀ෩ࢄ૚ି(෩ࢄ࢏ࢃࢀ෩ࢄ)࢏෥࢞ = ࢏ࢎ
 (4) ࢟(ࡾࡸࡸ)

where ࢞෥࢏is the ݅ݐℎ row of the LLR model matrix ࢄ෩given 
as:  
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෩ࢄ              = ൦

1 ଵଵݔ ଵଶݔ ⋯ ଵ௞ݔ
1 ଶଵݔ ଶଶݔ ⋯ ଶ௞ݔ

⋮
1

⋮
௡ଵݔ

⋮
௡ଶݔ

⋱
⋯

⋮
௡௞ݔ

൪,  (5) 

 
݊ is an ࢏ࢃ × ݊ diagonal matrix of the weights for 
estimating the ݅ݐℎ response. The weights utilized in the 
LLR model are derived from one of the several kernel 
functions such as the Gaussian kernel function (Fan and 
Gibjels, 1992; Anderson-Cook and Prewitt, 2005; Zheng 
et al., 2013). 
 
The ݐݎℎ-entry, say ݓ௥ of kernel weights matrix, ࢏ࢃ for 
estimating ݕ௜in (4) is obtained from the product kernel as: 
௥ݓ = ∏௝ୀଵ

௞ ܭ ቀ
௫೔ೕି௫ೝೕ

௕
ቁ ∑ ∏௝ୀଵ

௞ ܭ ቀ
௫೔ೕି௫ೝೕ

௕
ቁ௡

௜ୀଵൗ , ݅ =
1,2, … , ݊, ݆ = 1,2, … , ݇, ݎ = 1,2, … , ݊,                            (6) 
 

where ܭ ቀ
௫೔ೕି௫ೝೕ

௕
ቁ = ݁ି൬

ೣ೔ೕషೣೝೕ
್ ൰

మ

 is the simplified 
Gaussian function. For response surface data, the kernel 
weights (designed to lie in[0,1]), are derived via the 
simplified Gaussian function of smoothed differences 
between the value of the explanatory variable at each data 
point and a specified data point of interest, and ܾ, 
0 < ܾ ≤ 1, is the smoothing parameter (bandwidth) 
(Mays et al., 2001; Edionwe et al., 2016).  
Hence, the ݊ × ݊ diagonal matrix kernel weights ࢏ࢃ, ݅ =
1,2, … , ݊,  can be express as: 

࢏ࢃ = ൦

ଵݓ 0 ⋯ 0
0 ଶݓ ⋯ 0
⋮
0

⋮
0

⋱ 0
… ௡ݓ

൪, 

 

 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
൮

∏ ௘
ష൬

ೣ೔ೕషೣభೕ
್ ൰

మ
ೖ
ೕసభ

∑ ∏ ௘
ష൬

ೣ೔ೕషೣభೕ
್ ൰

మ
ೖ
ೕసభ

೙
೔సభ

൲ 0 ⋯ 0

0 ൮
∏ ௘

ష൬
ೣ೔ೕషೣమೕ

್ ൰
మ

ೖ
ೕసభ

∑ ∏ ௘
ష൬

ೣ೔ೕషೣమೕ
್ ൰

మ
ೖ
ೕసభ

೙
೔సభ

൲ … 0

⋮
0

⋮
0

⋱
⋯

⋮

൮
∏ ௘

ష൬
ೣ೔ೕషೣ೙ೕ

್ ൰
మ

ೖ
ೕసభ

∑ ∏ ௘
ష൬

ೣ೔ೕషೣ೙ೕ
್ ൰

మ
ೖ
ೕసభ

೙
೔సభ

൲

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

 
In matrix notation, the LLR estimates of the response can 
be expressed as: 

ෝ(௅௅ோ)࢟ = ࢟(௅௅ோ)ࡴ =

⎣
⎢
⎢
⎢
૚ࢎ⎡

(ࡾࡸࡸ)

૛ࢎ
(ࡾࡸࡸ)

⋮
࢔ࢎ

⎦(ࡾࡸࡸ)
⎥
⎥
⎥
⎤

 (7) ,࢟

where ࡴ(௅௅ோ) is the ݊ × ݊ LLR Hat matrix, and ࢏ࢎ
(ࡾࡸࡸ) =

 is the ݅௧௛ row vector of the LLR Hat ࢏ࢃࢀ෩ࢄ૚ି(෩ࢄ࢏ࢃࢀ෩ࢄ)࢏෥࢞
matrix for estimating ݕ௜.  
 
For small sample studies such as RSM, the optimal 
bandwidth is chosen based on the minimization of the 
Penalized Prediction Error Sum of Squares (ܴܲܵܵܧ∗∗) 
criterion given as: 
(ܾ)∗∗ܵܵܧܴܲ = ௉ோாௌௌ

 ௡ି௧௥௔௖௘൫ு(ಽಽೃ)(௕)൯ା(௡ି௞ିଵ)ೄೄಶ೘ೌೣషೄೄಶ್
ೄೄಶ೘ೌೣ

,    (8) 

 
whereܴܲܵܵܧ = ∑ ൫ݕ௜ − ො௜,ି௜ݕ

(௅௅ோ)൯
ଶ௡

௜ୀଵ ො௜,ି௜ݕ,
(௅௅ோ) is the leave-

one-out cross-validation estimate of ݕ௜ with the ݅ݐℎ 
observation left out, ܵܵܧ௠௔௫ is the maximum Sum of 
Squared Errors obtained as ܾ tends to infinity, ܵܵܧ௕ is the 
Sum of Squared Errors associated with a particular value 

of b, ݎݐ൫ܪ(௅௅ோ)ܾ൯ is the trace of the LLR Hat matrix 
(Mays et al., 2000; Pickle et al., 2008). 
 
LLR is flexible and sensitive to interpretation of local 
trends in a data particular when applied to fit data which 
consist of a single explanatory variable and a fairly large 
sample size. LLR is generally found to perform poorly for 
small sample data generated from two or more 
explanatory variables (Pickle et al., 2008; Wan and Birch, 
2011; Geenens, 2011; Edionwe et al., 2018). 
 
MRR2 model combines both OLS estimates and a portion 
of the LLR estimates of OLS residuals via a mixing 
parameter, ߣ, where 0 ≤ ߣ ≤1 (Mays et al., 2001; Mays 
and Birch, 2002; Edionwe et al., 2018). 
 
Mathematically, MRR2 estimate, ݕො௜

(ெோோଶ)of ݕ௜, is given 
as: 
ො௜ݕ

(ெோோଶ) = ࢟ࢀࢄ૚ି(ࢄࢀࢄ)࢏࢞ + λܠ෤ܑ(ࢄ෩ࢄ࢏ࢃࢀ෩ࢀ)ି૚ࢄ෩ࡵ)࢏ࢃࢀ −
 (9)                ,࢟(ࢀࢄ૚ି(ࢄࢀࢄ)ࢄ         

= ࢟ࢀࢄ૚ି(ࢄࢀࢄ)࢏࢞ + λܠ෤ܑ൫ࢄ෩ࢄ࢏ࢃࢀ෩൯
ି૚

 (10)      ,(ࡿࡸࡻ)࢘࢏ࢃࢀ෩ࢄ
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where (ࡿࡸࡻ)࢘ is the ݊ × 1 vector of the OLS residuals, ࡵ is 
an ݊ × ݊ identity matrix and ࢏ࢃis a ݊ × ݊ diagonal 
weights matrix for estimating the ݅௧௛entry of (ࡿࡸࡻ)࢘ and 
derived as in (4) for LLR using (8) for its bandwidth with 
ො௜,ି௜ݕ

(௅௅ோ) and ܪ(௅௅ோ) replaced with ݕො௜,ି௜
(ெோோଶ) and ܪெோோଶ, 

respectively, and every other term retaining the previous 
definition in (8).  
 
Equation (10) may be expressed in matrix form as: 

(ெோோଶ)࢟ =

⎣
⎢
⎢
⎢
૚ࢎ⎡

(૛ࡾࡾࡹ)

૛ࢎ
(૛ࡾࡾࡹ)

⋮
࢔ࢎ

⎦(૛ࡾࡾࡹ)
⎥
⎥
⎥
⎤

࢟ =  (11)   ,࢟(૛ࡾࡾࡹ)ࡴ

 
where 
࢏ࢎ 

(૛ࡾࡾࡹ) = ࢀࢄ૚ି(ࢄࢀࢄ)࢏࢞ + λܠ෤ܑ(ࢄ෩ࢄ࢏ࢃࢀ෩ࢀ)ି૚ࢄ෩ࡵ)࢏ࢃࢀ −
݊ is the ݅௧௛ row of the (ࢀࢄ૚ି(ࢄࢀࢄ)ࢄ × ݊ MRR2 Hat 
matrix, ࡴ(ெோோଶ) (Pickle et al., 2008). 
 
The optimal value ofߣ, is selected based on the 
minimization of a form of the ܴܲܵܵܧ∗∗ criterion given as:  
(ߣ)∗∗ܵܵܧܴܲ = ௉ோாௌௌ

௡ି௧௥ቀு(ಾೃೃమ)(௕∗ ,ఒ)ቁା(௡ି௞ିଵ)
ೄೄಶ೘ೌೣషೄೄಶ(್∗,ഊ)

ೄೄಶ೘ೌೣ

,    (12) 

 
whereܴܲܵܵܧ =
∑ ൫ݕ௜ − ො௜,ି௜ݕ

(ெோோଶ)(ܾ∗, ൯(ߣ
ଶ௡

௜ୀଵ , ො௜,ି௜ݕ
(ெோோଶ)(ܾ∗, -is the leave (ߣ

one-out cross-validation MRR2 estimate of ݕ௜ given the 
optimal bandwidth ܾ∗and a candidate value of the mixing 
parameter λ, ܵܵܧ௕∗ఒ is the Sum of Squared of Errors 
given the optimal bandwidth and a candidate value of λ, 
ݎݐ ቀܪ(ெோோଶ)(ܾ∗,  ቁ is the trace of MRR2 hat matrix(ߣ
given the optimal bandwidth and a candidate value of λ 
(Mays and Birch, 2002; Wan and Birch, 2011). 
 
The MRR2 inherits the advantages of OLS (Robustness) 
and LLR (flexibility) while trying to minimize the 
limitations from both methods (Mays et al., 2001). LLR 
forms part of MRR2. Therefore, it follows that the factors 
that put a limitation on the performance of LLR also more 
or less put a limitation on the performance of MRR2. 
 
This paper focuses on improving the performance of 
MRR2 via the robustification of the kernel weights 
utilized by the LLR component. 
 
Once the data has been modelled RSM procedure 
proceeds to the optimization phase where the resulting 
fitted curve (from the estimated responses from equations 
(2), (4), (9) is used for determining the setting of the 
explanatory variables that optimizes the response based 
on the production requirement (Johnson and 
Montgomery, 2009; Mondal and Datta, 2011).  
 

When dealing with studies that involve ݉ response, 
݉ > 1,  it is essential that we get an optimal setting of the 
explanatory variables that simultaneously optimize all the 
responses with respect to their individual production 
requirements. For this purpose, the desirability function 
comes handy. The most popular criterion applied in the 
optimization of multiple responses is the Desirability 
function (Harrington, 1965; Derringer and Suich, 1980; 
Adalarasan and Santhanakumar, 2015). 
 
The overall objective of the Desirability criterion is to 
obtain the setting of the explanatory variables that 
maximizes the geometric mean (D) of all the individual 
desirability measures, where D is given as: 
 

ܦ  = ݁ݖ݅݉݅ݔܽ݉ ൬ቀ∏ ݀௣ ቀݕො௣(࢞)ቁ௠
௣ୀଵ ቁ

ଵ ௠⁄
൰, (13) 

where ݀௣ ቀݕො௣(࢞)ቁ, 0 ≤ ݀௣ ቀݕො௣(࢞)ቁ ≤ 1, ݌ = 1,2, … , ݉,  
 
are the scalar measures obtained from the transformation 
of the estimated response in equations (2), (4), (9) with 
respect to the production requirement of a response (Wu 
and Hamada, 2000; Wan and Birch, 2011). 
 
If the response is of nominal-the-better (NTB) type where 
the ݌௧௛ response acceptable value lies between an upper 
limit, U and a lower limit, L, ݀௣ ቀݕො௣(࢞)ቁ is given as: 

݀௣ ቀݕො௣(࢞)ቁ =

⎩
⎪
⎨

⎪
⎧

0
ቄ௬ො೛(࢞)ି௅

∅ି௅
ቅ

(࢞)ො௣ݕ < ܮ
ܮ          ≤ (࢞)ො௣ݕ  < ∅,

ቄ௎ି௬ො೛(࢞)

௎ି∅
ቅ          ∅ ≤ (࢞)ො௣ݕ ≤  ܷ,

0 (࢞)ො௣ݕ >  ܷ,

� (14) 

 
where ∅ is the target value of the ݌௧௛ response. 
If the objective is to maximize the ݌௧௛ response, 
݀௣ ቀݕො௣(࢞)ቁ is given as: 

݀௣ ቀݕො௣(࢞)ቁ =  ቐ
0

ቄ௬ො೛(࢞)ି௅

∅ି௅
ቅ

1

�
(࢞)ො௣ݕ < ,ܮ

ܮ         ≤ (࢞)ො௣ݕ ≤ ∅
(࢞)ො௣ݕ > ∅,

, (15) 

 
where∅ is interpreted as large enough value of the ݌௧௛ 
response.  
If the objective is to minimize the ݌௧௛ 
response,݀௣ ቀݕො௣(࢞)ቁ is given as: 

݀௣ ቀݕො௣(࢞)ቁ     = ቐ
1

ቄ௎ି௬ො೛(࢞)

௎ି∅
ቅ

0

�
(࢞)ො௣ݕ < ∅,

        ∅ ≤ (࢞)ො௣ݕ ≤ ܷ
(࢞)ො௣ݕ > ܷ,

, (16) 

 
where ∅ is a small enough value of the ݌௧௛ response. 
In this paper, all the optimization routines regarding the 
minimization of the PRESS** criterion for the choice of 
optimal bandwidth, optimal mixing parameter and the 
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maximization of the desirability function for the 
determination of the optimal value of the response and the 
corresponding setting of the explanatory variables in 
equations (8), (12) and (13), respectively, were carried 
out using the Genetic Algorithm (GA) optimization 
toolbox available in Matlab software. 
 
GA is based on natural selection and other genetic 
concepts including population, chromosomes, selection, 
crossover, mutation, etc. (Heredia-Langner et al., 2004; 
Chen and Ye, 2009). GA can be applied to solve several 
difficult optimization problems including the one in 
which the objective function lacks closed form expression 
as in the case with LLR and MRR2 (Alvarez et. al., 2009; 
Thongsook et al., 2014; Yeniay, 2014). 
 
MATERIALS AND METHODS 
 
Experimental Procedure 
Material: Mild Steel (EN10) rods of diameter 25mm with 
Carbon Equivalent (CE) of 0.34 were purchased from 
local source. Mild steel (EN10) materials find wide range 
of industrial applications including the manufacture of 
rifle barrels and gear wheel housings. The mechanical and 
chemical properties, certified according to ISO 9001 
Standard at 20o Centigrade, are presented in Table 1 and 
Table 2, respectively. 

 
 

 

Table 1. Chemical composition of mild steel (EN10) 

 
Table 2.  Mechanical properties of mild steel (EN10). 
S No. Properties  Value 
1 Yield Strength (Re) 280.40N/m2 
2 Tensile Strength (Rm) 408.30N/m2 
3 Rm /Re Ratio 1.46 
4 Elongation  27.40% 

 
In order to remove contaminants from the mild steel rod, 
a 1mm diameter was first rough turned to get a 24mm 
working diameter. 
The rods were then cut into test pieces of length 60mm. 
Machining was carried out using a CNC lathe machine 
(GT-1628 CNC) manufactured by Ganesh Machinery. 
The CNC Lathe machine is shown in Figure 1. 

   

 
 
Fig. 1. A CNC lathe machine. 
 
The experiment was based on a Central Composite 
Design (CCD) in ݇ = 3 machining parameters 
represented by the explanatory variables, namely cutting 

speed in rev/min (ݔଵ), feed rate in mm/rev (ݔଶ) and depth 
of cut in mm (ݔଷ). The decision to use a CCD was 
informed by the need to capture, as much as possible, the 

S No. Elements Composition 
1 Carbon (C) 0.170 
2 Silicon  (Si) 0.310 
3 Manganese (Mn) 0.780 
4 Phosphorus (P) 0.030 
5 Sulfur  (S) 0.030 
6 Titanium (Ti) 0.000 
7 Copper  (Cu) 0.310 
8 Nickel  (Ni) 0.070 
9 Chromium  (Cr) 0.060 

10 Molybdenum  (Mo) 0.008 
11 Vanadium  (V) 0.000 
12 Aluminium (Al) 0.027 
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quadratic effects of each machining parameters. 
Moreover, each level of the experiment was replicated 
three times in order to reduce the effect of random errors 
(Del Castillo, 2007; Myers et al., 2009).    
 
The ranges of values for the machining parameters were 
based on standard charts in machining technology (Jain, 
2009). The three portions of a CCD comprising five 
standard distinct values of each of the k explanatory 
variables used in the paper are as follows: 

(i) The 2௞ = 8 Corner points (Values) with 
௝ݔ = Low Value and High Value for 
݆ = 1,2, … , ݇ which form the factorial 
portion of the design,  

(ii) ݇ = 3 Centre points with ݔ௝ =
(High Value + Low Value)/2, for ݆ =
1, … , ݇; 

(iii) 2݇ = 6 Star or Axial points with ݔ௝ = ߙ− =
High Value −2.6818×(High Value – Centre 
Value), and ݔ௝ = ߙ = High Value +
0.6818 × ൫High Value –  Centre Value൯. 

The summary of the five standard values obtained for 
each of the machining parameters, the resulting CCD with 

the ݅ =17 data points (from i, ii and iii above) and the 
corresponding responses from three replicates are 
presented in Table 3, 4 and 5, respectively. Also included 
in Table 3 are the coded values, ݔ௜௝ , ݅ = 1,2, … , ݊, ݆ =
1,2 … , ݇, of each of the machining parameters, where 
0 ≤ ௜௝ݔ ≤ 1, for the purpose of the LLR model (Pickle et 
al., 2008; Wan and Birch, 2011). To do this, we use the 
formula:  
࢐࢏(ࢋ࢛࢒ࢇ࢜ ࢊࢋࢊ࢕ࢉ)࢞ =

(ࢋ࢛࢒ࢇ࢜ ࢒ࢇࢋ࢘࢞)࢔࢏࢓ି࢐࢏(ࢋ࢛࢒ࢇ࢜ ࢒ࢇࢋ࢘)࢞

(܍ܝܔ܉ܞ ܔ܉܍ܚܠ) ܖܑܕି(܍ܝܔ܉ܞ ܔ܉܍ܚܠ)ܠ܉ܕ
,  

  
where ࢋ࢛࢒ࢇ࢜ ࢊࢋࢊ࢕ࢉ࢞ is the coded value of ࢐࢏࢞, 
 are the minimum (ࢋ࢛࢒ࢇ࢜ ࢒ࢇࢋ࢘࢞)and max (ࢋ࢛࢒ࢇ࢜ ࢒ࢇࢋ࢘࢞)ܖܑܕ
and maximum values of each explanatory variable, 
respectively. 
 
Figure 2 shows the rods (test pieces) after being machined 
with a coated cemented carbide tool according to each 
setting of the machining parameters in Table 4. After 
machining, the test pieces were allowed to cool to room 
temperature. The tester (TR200) used to measure the 
roughness parameters (ܴ௔, ܴ௭ , ܴ௤ , ܴ௧) of each of the test 
pieces is shown in Figure 3.  

 
Table 3. The five values of each of the machining parameters used to generate the CCD. 

 

Parameter -ࢻ Low Value  Medium  High value +ࢻ 
Cutting Speed 215.91 250 300 350 384.09 
Feed Rate 0.0159 0.05 0.10 0.15 0.1841 
Depth of Cut 0.0111 0.11 0.2550 0.40 0.4989 

 
   Table 4. The CCD showing the real experimental values and the coded values. 

 

 ૜࢞ ૛࢞ ૚࢞ ࢏
Coded Values 

 ૜࢞ ૛࢞ ૚࢞
1 250.00 0.0500 0.1100 0.2030 0.2030 0.2030 
2 250.00 0.0500 0.4000 0.2030 0.2030 0.7970 
3 250.00 0.1500 0.1100 0.2030 0.7970 0.2030 
4 250.00 0.1500 0.4000 0.2030 0.7970 0.7970 
5 350.00 0.0500 0.1100 0.7970 0.2030 0.2030 
6 350.00 0.0500 0.4000 0.7970 0.2030 0.7970 
7 350.00 0.1500 0.1100 0.7970 0.7970 0.2030 
8 350.00 0.1500 0.4000 0.7970 0.7970 0.7970 
9 215.91 0.1000 0.2550 0.0000 0.5000 0.5000 
10 384.09 0.1000 0.2550 1.0000 0.5000 0.5000 
11 300.00 0.0159 0.2550 0.5000 0.0000 0.5000 
12 300.00 0.1841 0.2550 0.5000 1.0000 0.5000 
13 300.00 0.1000 0.0111 0.5000 0.5000 0.0000 
14 300.00 0.1000 0.4989 0.5000 0.5000 1.0000 
15 300.00 0.1000 0.2550 0.5000 0.5000 0.5000 
16 300.00 0.1000 0.2550 0.5000 0.5000 0.5000 
17 300.00 0.1000 0.2550 0.5000 0.5000 0.5000 
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Table 5. The three replicates of surface roughness in the four parameters and their averages using the CCD in Table 4.   
 

݅ 
 

Surface Roughness 
 ࢇࡾ

Rep1 
 ࢇࡾ

Rep2 
 ࢇࡾ

Rep3 
 ࢇࡾ
Ave 

 ࢠࡾ
Rep1 

 ࢠࡾ
Rep2 

 ࢠࡾ
Rep3 

 ࢠࡾ
Ave 

 ࢗࡾ
Rep1 

 ࢗࡾ
Rep2 

 ࢗࡾ
Rep3 

 ࢗࡾ
Ave 

 ࢚ࡾ
Rep1 

 ࢚ࡾ
Rep2 

 ࢚ࡾ
Rep3 

 ࢚ࡾ
Ave 

1 1.5040 1.4855 1.5123 1.5006 4.3319 4.9666 4.1706 4.4897 1.8069 1.7888 2.1628 1.9195 3.6991 4.4401 5.2156 4.4516 
2 0.7409 0.8012 0.6923 0.7448 2.4990 2.1043 3.3800 2.6611 1.0218 1.0091 0.2332 0.7547 1.6702 2.0016 1.0328 1.5682 
3 0.7699 0.6989 0.8442 0.7710 2.6040 3.0542 1.9636 2.5406 0.9660 1.0112 0.5437 0.8403 2.0039 1.5404 1.2299 1.5914 
4 2.6808 3.0019 2.8760 2.8529 2.8019 3.3439 4.6896 3.6118 3.7171 2.9696 3.7794 3.4887 5.9806 6.1720 7.2718 6.4748 
5 1.2520 1.4019 1.2701 1.3080 3.9793 3.7995 4.3166 4.0318 1.8840 1.7701 1.4939 1.7160 3.1377 2.7614 5.1304 3.6765 
6 0.9905 0.9109 1.0887 0.9967 2.6994 3.8377 3.8546 3.4639 1.4533 0.9998 1.1802 1.2111 1.9299 2.8116 2.8368 2.5261 
7 0.5101 0.7004 0.2928 0.5011 1.8533 2.0200 1.6950 1.8561 0.5309 1.0041 0.2956 0.6102 1.7007 1.3919 0.8065 1.2997 
8 1.7106 1.3010 1.3813 1.4643 1.8620 2.0989 1.5591 1.8400 2.0102 1.6569 2.0029 1.8900 4.1040 4.6032 2.9142 3.8738 
9 0.8303 0.6104 0.9530 0.7979 3.8281 3.7799 5.3382 4.3154 0.7993 0.7886 1.4007 0.9962 2.2510 1.9778 2.4939 2.2409 
10 0.3063 0.4430 0.3700 0.3731 2.5072 2.1713 1.6755 2.1180 0.4001 0.7073 0.0167 0.3747 0.7515 1.0980 0.5742 0.8079 
11 1.2913 1.4254 1.3369 1.3512 3.9544 2.9797 4.7974 3.9105 1.7608 1.3387 2.0788 1.7261 3.9486 3.1774 4.4021 3.8427 
12 1.7778 2.0080 1.1909 1.6589 2.8330 2.5457 1.7475 2.3754 2.3050 2.5158 1.2704 2.0304 5.0009 5.3001 3.9292 4.7434 
13 1.1870 0.9853 1.0497 1.0740 3.5935 2.9007 2.6174 3.0372 1.6100 1.2787 0.7818 1.2235 3.2116 2.5994 2.6898 2.8336 
14 2.5885 2.4007 3.0130 2.6674 2.8077 3.9087 4.7658 3.8274 3.4936 2.6455 4.5700 3.5697 6.3882 7.1597 9.4939 7.6806 
15 1.5241 1.7602 1.2265 1.5036 5.1100 4.9070 3.5367 4.5179 2.2075 1.9889 2.6970 2.2978 4.9082 4.6619 5.2880 4.9527 
16 1.4674 1.3399 1.7326 1.5133 4.2890 4.6920 4.2916 4.4242 1.9393 1.9592 2.0316 1.9767 5.1076 4.7783 5.1954 5.0271 
17 1.7118 1.4161 1.3694 1.4991 4.1166 4.4581 4.3541 4.3096 1.9068 2.0091 2.6754 2.1971 4.7678 4.8477 5.9644 5.1933 
 
The test pieces were allowed to cool to room temperature and their surface roughness values in the four parameters 
(ܴ௔ , ܴ௭ , ܴ௤ and ܴ௧) obtained using the surface roughness tester shown in Figure 3. 
 

 
Fig. 2. Sample of the mild steel (EN10) test pieces. 
 

 
Fig. 3. Surface roughness tester (TR200). 
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Methodology 
 
The estimate from the OLS component of MRR2 is fixed 
for a given polynomial specified for ݂in equation (1). 
Hence, researchers usually look to LLR component since 
improvement in the LLR component seamlessly carries 
over to MRR2 model. 
 
A motivation for this research is that OLS residuals 
reflect the inadequacy of the OLS component of MRR2, 
thus kernel weights derived with embellishments from the 
OLS residuals would provide superior kernel weights for 
correcting the disparity in OLS estimates and the true 
response, and consequently, better estimates than those 
obtained solely from the explanatory variables. 
 
The kernel weights in equation (6) can be represented in a 
general form as: 
௥ݓ = ௥ݍ ቂ∏௝ୀଵ

௞ ܭ ቀ
௫೔ೕି௫ೝೕ

௕
ቁ ∑ ∏௝ୀଵ

௞ ܭ ቀ
௫೔ೕି௫ೝೕ

௕
ቁ௡

௜ୀଵൗ ቃ , ݅ =
1,2, … , ݊, ݆ = 1,2, … , ݇, ݎ = 1,2, … , ݊,                        (17) 

where ܭ ቀ
௫೔ೕି௫ೝೕ

௕
ቁ = ݁ି൬

ೣ೔ೕషೣೝೕ
್ ൰

మ

 is the simplified 
Gaussian function, ݍ௜ = 1, ݅ = 1,2, … , ݊. 
The kernel weights ݓ௜, ݅ = 1,2, … , ݊, are derived from the 
simplified Gaussian function of the smoothed differences 
between the value of the explanatory variable at each data 
point and a specified point of interest, thus lacking 
reference to the OLS residuals the LLR component is 
designed to estimate. Therefore, the weights derived lack 
consonance with the relative sizes and shape of the OLS 
residuals that the LLR component is designed to estimate. 
 
To correct this defect in the existing kernel weights, we 
propose a substitution of ݍ௥ in equation (17) with kernel 
weights derived from the simple Gaussian function of the 
residuals from the OLS component of MRR2 given as 

௥ݍ = ݁ିቀ
೛೔ష೛ೝ)

್భ
ቁ

మ
,where ݌௜, ݅ = 1,2, … , ݊, is the 

transformed OLS residuals, ݕ௜ − ො௜ݕ
(ை௅ௌ), ݌௥  is the ݎ௧௛ 

transformed OLS residuals, ܾଵ is the bandwidth for 
smoothing the differences between the transformed OLS 
residuals at ݅௧௛ and the ݎ௧௛ data points. This is to ensure 
that the kernel weights derived reflect the relative the 
sizes of the OLS residuals at each of the data points. 
 
The philosophy applied in the transformation is that a 
data point where the OLS residual,݁௜ = ௜ݕ − ො௜ݕ

(ை௅ௌ) is 
negative indicates that the OLS estimate is superfluous 
(i.e. larger than the true responseݕ௜) and therefore should 
be assigned a relatively smaller kernel weight than the 
one assigned to a data point where  ݁௜ = ௜ݕ − ො௜ݕ

(ை௅ௌ) is 
either zero or positive. 
 
We now present two distinct procedures for utilizing the 
OLS residuals in the determination of ݌௜, ݅ = 1,2, … , ݊. 

(i) ࢏࢖ from Linearly Transformed Ranks of OLS 
Residuals 
Let ࣂ denotes the ݊ × 1 vector of the residuals from the 
OLS component of MRR2. First, we obtain the ranks, 
݅,௜ߠ = 1,2, … , ݊,of the values of OLS residuals, ݁௜ = ௜ݕ −
ො௜ݕ

(ை௅ௌ) , ݅ = 1,2, … ݊, in an ascending order, that is 
Rank(݁௜) = ௜ାଵߠ ௜, whereߠ > ݅ ௜, for everyߠ = 1,2, … , ݊. 
This ensures that relatively larger ranks (weights) are 
assigned to relatively larger OLS residuals. 
 
Next, we obtain the linearly transformed ranks of the 
OLS residuals, denoted as ݌௜, ݅ = 1,2, … , ݊, to ensure they 
lie in the interval [0, 1] in consonance with standard 
values of kernel weights and that of the explanatory 
variables: 
௜݌ = ఏ೔ି୫୧୬ (ࣂ)

୫ୟ୶(ࣂ)ି୫୧୬ (ࣂ)
= ఏ೔ିଵ

௡ିଵ
, ݅ = 1,2, … , ݊,  (18) 

 
(ii) ࢏࢖ from Linearly Translated and Transformed 
OLS Residuals 
First, we obtain the horizontal translation of the OLS 
residuals, ࢏ࢋ = ௜ݕ − ො௜ݕ

(ை௅ௌ), in order to assign a number ݐ௜ 
to each of the OLS residuals, where  
௜ݐ = ݁௜ + |min (݁௜)| + 1, ݅ = 1,2, … , ݊,  (19)   
Again, (19) ensures that relatively larger numbers 
(weights) are assigned to relatively larger OLS residuals.  
Next, we get the linearly translated OLS residuals ݐ௜ to 
ensure they lie in the interval [0, 1]. 
௜݌ = ௧೔ି୫୧୬ (࢚)

୫ୟ୶(࢚)ି୫୧୬ (࢚)
= ௧೔ିଵ

୫ୟ୶(࢚)ିଵ
,  ݅ = 1,2, … , ݊,  (20) 

where ࢚ is the vector of the linearly translated OLS 
residuals. 
Therefore, the product Gaussian kernel weight ݓ௥of ࢏ࢃ 
in (17), ݅ = 1,2, … , ݊, for MRR2 estimate ݕො௜

ெோோଶ of ݕ௜ is 
obtained as: 
௥ݓ =

݁ିቀ
೛೔ష೛ೝ)

್భ
ቁ

మ

ቂ∏௝ୀଵ
௞ ܭ ቀ

௫೔ೕି௫ೝೕ

௕మ
ቁ ∑ ∏௝ୀଵ

௞ ܭ ቀ
௫೔ೕି௫ೝೕ

௕మ
ቁ௡

௜ୀଵൗ ቃ, (21) 
where ݅ = 1,2, … , ݊, ݆ = 1,2, … , ݇, ݎ = 1,2, … , ݊, and ݌௜ 
is any of the transformed OLS residuals in (18) or (20). 
 
RESULTS AND DISCUSSION 
 
Surface Rough Data 
The data for analysis is extracted from Table 4 (the coded 
values of each explanatory variable) and Table 5 (the 
average of the three replicates of each of the roughness 
parameters) and presented in Table 6. For each roughness 
parameters, a full quadratic regression model was found 
to give the highest ܴଶand a p-value of less than 0.05 for 
each term.  
The process requirements considered in the study are as 
follows: 
 
Minimize ܴ௔with target value ∅ =0.01 and upper bound 
ܷ=1.2911, where U= mean of Ra; 
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Minimize ܴ௭ with target value ∅ =0.01 and upper bound 
ܷ =3.2643, where U=mean of Rz; 
Minimize ܴ௤with target value ∅ =0.01 and upper bound 
ܷ=1.6176, where U=mean of Rq; 
Minimize ܴ௧ with target value ∅ =0.01, and upper bound 
ܷ =3.6499, where U=mean of Rt. 
The goodness of fit and the optimization results are 
presented in Table 7 and Table 8, respectively. Figure 4 
shows the graphs of the residuals of each regression 

model as it applies to each of the four responses (that is 
the four parameters of surface roughness). 
 
For ease of comparison, the results from MRR2 that 
utilizes the transformed OLS residuals in equation (18) 
and equation (20) are designated 2ܴܴܯ௥௔௡௞and 
 2ା௩௘, respectively. The best values for each statisticsܴܴܯ
across the responses are in bold. 

   
Table 6. Surface roughness data. 
 

 ࢏
Coded Values Surface Roughness 

 ࢚ࡾ ࢗࡾ ࢠࡾ ࢇࡾ ૜࢞ ૛࢞ ૚࢞

1 0.2030 0.2030 0.2030 1.5006 4.4897 1.9195 4.4516 

2 0.2030 0.2030 0.7970 0.7448 2.6611 0.7547 1.5682 

3 0.2030 0.7970 0.2030 0.7710 2.5406 0.8403 1.5914 

4 0.2030 0.7970 0.7970 2.8529 3.6118 3.4887 6.4748 

5 0.7970 0.2030 0.2030 1.3080 4.0318 1.7160 3.6765 

6 0.7970 0.2030 0.7970 0.9967 3.4639 1.2111 2.5261 

7 0.7970 0.7970 0.2030 0.5011 1.8561 0.6102 1.2997 

8 0.7970 0.7970 0.7970 1.4643 1.8400 1.8900 3.8738 

9 0.0000 0.5000 0.5000 0.7979 4.3154 0.9962 2.2409 

10 1.0000 0.5000 0.5000 0.3731 2.1180 0.3747 0.8079 

11 0.5000 0.0000 0.5000 1.3512 3.9105 1.7261 3.8427 

12 0.5000 1.0000 0.5000 1.6589 2.3754 2.0304 4.7434 

13 0.5000 0.5000 0.0000 1.0740 3.0372 1.2235 2.8336 

14 0.5000 0.5000 1.0000 2.6674 3.8274 3.5697 7.6806 

15 0.5000 0.5000 0.5000 1.5036 4.5179 2.2978 4.9527 

16 0.5000 0.5000 0.5000 1.5133 4.4242 1.9767 5.0271 

17 0.5000 0.5000 0.5000 1.4991 4.3096 2.1971 5.1933 

 
The OLS fitted models for each of four roughness parameters are as follows: 
1.0026=ࢇ෡ࡾ + ૚࢞4.9097  − ૛࢞1.2062 − ૜࢞2.6438 − ૚࢞3.7850

૛ − ૛࢞0.1068
૛+ 1.3558࢞૜

૛-2.4343࢞૚࢞૛ 
૜࢞૚࢞0.9554− +  ,૜࢞૛ܠ5.8274
2.6311 =ࢠ෡ࡾ + ૚࢞5.5699 + ૛࢞3.1550 + ૜࢞1.7057 − ૚࢞5.1394

૛ − ૛࢞5.4344
૛ − ૜࢞4.2770

૛-3.9695࢞૚࢞૛ 
૜࢞૚࢞0.2457+ +  ,૜࢞૛࢞4.8912
0.8571=ࢗ෡ࡾ + ૚࢞7.3939  − ૛࢞0.7712 − ૜࢞2.7168 − ૚࢞6.0627

૛ − ૛࢞1.2915
૛+0.7819࢞૜

૛ −  ૛࢞૚࢞2.9500
૜࢞૚࢞1.0043− +  ,૛࢞૚࢞7.9327
1.8498=࢚෡ࡾ + ૚࢞16.5329 − ૛࢞1.2062 − ૜࢞4.6038 − ૚࢞15.2073

૛ − ૛࢞4.1327
૛-0.2765࢞૜

૛-4.3583࢞૚࢞૛ 
૜࢞૚࢞0.8167− +  ,૜࢞૛࢞16.2842
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Table 7. Goodness of fit of the regression models for the surface roughness data. 
 
response Model ࢈૚/࢈૛ ࣅ DF SSE MSE ࡾ૛ ࢐ࢊ࡭ࡾ

૛  ∗∗ࡿࡿࡱࡾࡼ 

 ࢇࡾ

OLS - - 7.0000 0.5036 0.0719 92.8803 83.7264 0.6148 
LLR 0.4372 - 6.3646 0.4699 0.0738 93.3567 83.2995 5.9631 

MRR2 0.3398 1.0000 3.2142 0.1283 0.0399 98.1860 90.9700 1.1044 
 0.3979 99.9901 99.9988 0.0000 0.0001 1.8920 1.0000 0.2157/0.2035 ࢑࢔ࢇ࢘૛ࡾࡾࡹ
 0.4451 99.9881 99.9985 0.0001 0.0001 2.0052 1.0000 0.1836/0.2210 ࢋ࢜૛ାࡾࡾࡹ

 ࢠࡾ

OLS - - 7.0000 1.8758 0.2680 87.4581 71.3327 2.1736 
LLR 0.5615 0 8.7731 3.7841 0.4313 74.6997 53.8585 11.3711 

MRR2 0.3223 1.0000 2.9859 0.1023 0.0343 99.3157 96.3332 1.1210 
 0.3003 99.3178 99.9271 0.0064 0.0109 1.7106 1.0000 0.1995/0.2371 ࢑࢔ࢇ࢘૛ࡾࡾࡹ
 0.3236 99.2022 99.9104 0.0075 0.0134 1.7976 1.0000 0.2034/0.2338 ࢋ࢜૛ାࡾࡾࡹ

 ࢗࡾ

OLS - - 7.0000 1.1678 0.1668 91.0914 79.6376 1.3413 
LLR 0.4752 - 7.2006 1.6309 0.2265 87.5585 72.3543 12.1785 

MRR2 0.3410 1.0000 3.2302 0.2806 0.0869 97.8597 89.3986 1.9281 
 0.8300 99.4151 99.9552 0.0048 0.0059 1.2258 1.0000 0.2236/0.2309 ࢑࢔ࢇ࢘૛ࡾࡾࡹ
 0.9705 98.1771 99.8099 0.0149 0.0249 1.6688 1.0000 0.1779/0.2215 ࢋ࢜૛ାࡾࡾࡹ

 ࢚ࡾ

OLS - - 7.0000 6.1460 0.8780 89.4368 75.8555 7.1019 
LLR 0.5015 - 7.7328 10.7671 1.3924 81.4945 61.7102 60.4051 

MRR2 0.3407 1.0000 3.2262 0.9555 0.2962 98.3578 91.8554 7.7502 
 2.5816 99.8030 99.9791 0.0072 0.0122 1.6988 1.0000 0.2617/0.2361 ࢑࢔ࢇ࢘૛ࡾࡾࡹ
 2.6252 99.6166 99.9533 0.0139 0.0272 1.9499 1.0000 0.1686/0.2011 ࢋ࢜૛ାࡾࡾࡹ

 
From Table 7, we observe that across the four responses, either 2ܴܴܯ௥௔௡௞ or 2ܴܴܯା௩௘ gives best value of each 
statistics including PRESS** criterion which is key for the superior prediction of the values of the explanatory variables 
that would simultaneously optimize the four roughness parameters.  

 
Fig. 4. Plots of residuals from each model for the surface roughness data. 
The plots of the residual of each model in Figure4 shows that the residuals from 2ܴܴܯ௥௔௡௞ and 2ܴܴܯା௩௘overlap at 
virtually all data points but are closest to the zero residual line across the four parameters of surface roughness. This 
indicates that 2ܴܴܯ௥௔௡௞ and 2ܴܴܯା௩௘  fit the data comparatively better than OLS, LLR and the MRR2 that utilizes 
existing kernel weights. 
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Table 8. Optimization results based on desirability function for the surface roughness data. 
 

MODEL ࢞૚ ࢞૛ ࢞૜ ࡾ෡ࡾ ࢇ෡ࡾ ࢠ෡ࡾ ࢗ෡ࢊ ࢚૚ ࢊ૛ ࢊ૜ ࢊ૝ ࡰ(%) 

OLS 0.1587 0.9497 0.8898 0.2280 0.1300 0.0310 
6.1×
10ି଼ 

0.8299 0.9631 0.9870 1.0000 94.2 

LLR 0.0804 0.9993 0.9999 2.8×
10ି଻ 

0.9483 0.0615 0.2926 1.0000 0.7117 0.9679 0.9224 89.3 

MRR2 0.2402 0.9951 0.8421 0.1784 0.0227 
1.5×
10ି଺ 

0.0002 0.8686 0.9961 1.0000 1.0000 96.4 

×5.2 0.0113 0.8768 0.9599 0.2271 ࢑࢔ࢇ࢘૛ࡾࡾࡹ
10ି଺ 

0.0457 0.0032 0.9990 1.0000 0.9778 1.0000 99.4 

 0.0043 0.1017 0.1066 0.8412 0.9920 0.2514 ࢋ࢜૛ାࡾࡾࡹ
1.7×
10ିହ 

0.9246 0.9718 1.0000 1.0000 97.4 

 
The results presented in Table 8 shows that 2ܴܴܯ௥௔௡௞ 
provides the best optimal value of 99.4% given cutting 
speed of 0.2271 (254.3979m/min), feed rate of 
(0.1774mm/rev), and depth of cut of (0.4388mm). 
 2ା௩௘ came a close second with a optimal desirabilityܴܴܯ
value of 97.4%. 
 
Minced fish data 
The problem is from the literature. It involves three 
explanatory variables which include ݔଵ(washing 
temperatures),ݔଶ (washing time),ݔଷ (washing ratio of 
water volume to sample weight and four responses 
variablesݕଵ, ,ଶݕ  ,ସrepresenting springinessݕ ଷ andݕ
thiobarbituric acid number, (TBA), cooking loss, and 
whiteness index, respectively.  A CCD was used in the in 
the experimental stage of the study. 
 
According to the information presented in Shah et al. 
(2004), for each response, the model terms significant for 
the specified parametric models for OLS regression 
approach as well as the process requirements are as 
follows: 
yଵ:  the intercept, xଵ and xଵ

ଶ; 

Maximize ݕଵwith lower bound 1.70=ܮ, and target value 
∅= 1.92; 
yଶ:  the intercept,xଵ, xଶ, xଵ

ଶ, and xଵxଶ; 
Minimize ݕଶwith target value ∅ =20.16 and upper bound 
ܷ=21.00; 
,ଷ: the intercept, xଵݕ xଶ, xଷ, xଵ

ଶ, xଵxଶ, ଷ, and xଷݔଵݔ
ଶ; 

 
Minimize ݕଷ with target value ∅ =16.80, and upper bound 
ܷ =20.00; 
yସ: the intercept, xଵ and xଵ

ଶ. 
 
Maximize ݕସ with lower bound 45.00= ܮ, and target value 
∅ =50.98. 
 
The modeling spaces for LLR and LQR are based on the 
ones used for the OLS approach (Wan and Birch, 2011; 
Edionwe et al., 2014, Edionwe et al., 2016). 
 
The data is presented in Table 9. The goodness of fit and 
optimization results based on the desirability function are 
presented in Table 10 and 11, respectively. The plots of 
residuals for each model are shown in Figure 5.  
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Table 9. Minced fish data. 
 

݅ Coded values Response values 
 ૝࢟ ૜࢟ ૛࢟ ૚࢟ ૜࢞ ૛࢞ ૚࢞

1 0.2030 0.2030 0.2030 1.83 29.31 29.50 50.36 
2 0.7970 0.2030 0.2030 1.73 39.32 19.40 48.16 
3 0.2030 0.7970 0.2030 1.85 25.16 25.70 50.72 
4 0.7970 0.7970 0.2030 1.67 40.18 27.10 49.69 
5 0.2030 0.2030 0.7970 1.86 29.82 21.40 50.09 
6 0.7970 0.2030 0.7970 1.77 32.20 24.00 50.61 
7 0.2030 0.7970 0.7970 1.88 22.01 19.60 50.36 
8 0.7970 0.7970 0.7970 1.66 40.02 25.10 50.42 
9 0.0000 0.5000 0.5000 1.81 33.00 24.20 29.31 
10 1.0000 0.5000 0.5000 1.37 51.59 30.60 50.67 
11 0.5000 0.0000 0.5000 1.85 20.35 20.90 48.75 
12 0.5000 1.0000 0.5000 1.92 20.53 18.90 52.70 
13 0.5000 0.5000 0.0000 1.88 23.85 23.00 50.19 
14 0.5000 0.5000 1.0000 1.90 20.16 21.20 50.86 
15 0.5000 0.5000 0.5000 1.89 21.72 18.50 50.84 
16 0.5000 0.5000 0.5000 1.88 21.21 18.60 50.93 
17 0.5000 0.5000 0.5000 1.87 21.55 16.80 50.98 

 
Table 10. Goodness of fit of the regression models for the minced fish data. 
 
Response Model ࢈૚/࢈૛ ࣅ DF SSE MSE ࡾ૛ ࢐ࢊ࡭ࡾ

૛  ∗∗ࡿࡿࡱࡾࡼ 

 ૚࢟

OLS - - 14.0000 0.0231 0.0017 92.1256 91.0007 0.0042 
LLR 0.1463 - 12.1398 0.0126 0.0010 95.6990 94.3314 0.0026 

MRR2 0.1665 1.0000 12.2477 0.0126 0.0010 95.6938 94.3746 0.0026 
 0.0007 99.2110 99.4922 0.0001 0.0015 10.2971 1.0000 0.3322/0.2772 ࢑࢔ࢇ࢘૛ࡾࡾࡹ
 0.0008 99.1270 99.4367 0.0002 0.0017 10.3231 1.0000 0.2796/0.2747 ࢋ࢜૛ାࡾࡾࡹ

 ૛࢟

OLS - - 12.0000 90.9033 7.5753 93.3851 91.1801 19.6113 
LLR 0.4363 - 11.2152 45.3568 21.8771 82.1456 74.5284 36.4407 

MRR2 0.2567 0.5121 10.3049 57.4264 5.5727 95.8211 93.5117 16.6283 
 7.0541 99.4374 99.7815 0.4832 3.0026 6.2143 1.0000 0.3060/0.3397 ࢑࢔ࢇ࢘૛ࡾࡾࡹ
 7.0254 99.7856 99.9159 0.1841 1.1564 6.2799 0.9581 0.1948/0.3965 ࢋ࢜૛ାࡾࡾࡹ

 ૜࢟

OLS - - 9.0000 41.1338 4.5704 84.0607 71.6634 20.3074 
LLR 0.5371 - 8.3794 82.1622 9.8053 68.1622 39.2071 17.0573 

MRR2 0.3646 0.9063 4.4195 6.9603 1.5749 97.3029 90.2357 11.3852 
 4.1416 99.5852 99.9248 0.0669 0.1942 2.9020 1.0000 0.1502/1.0000 ࢑࢔ࢇ࢘૛ࡾࡾࡹ
 2.2142 99.8305 99.9680 0.0273 0.0825 3.0175 1.0000 0.1432/1.0000 ࢋ࢜૛ାࡾࡾࡹ

 ૝࢟

OLS - - 14.0000 98.8048 14.2003 54.1259 47.5724 48.9401 
LLR 0.1197 - 12.0308 12.2627 1.0193 97.1704 96.2369 17.1477 

MRR2 0.1218 1.0000 12.0366 12.2644 1.0189 97.1700 96.2381 19.1321 
 18.7498 97.7616 98.3567 0.6063 7.1217 11.7465 1.0000 0.4986/0.2568 ࢑࢔ࢇ࢘૛ࡾࡾࡹ
 17.8245 98.2519 98.7911 0.4735 5.2392 11.0652 1.0000 0.1569/0.1883 ࢋ࢜૛ାࡾࡾࡹ

 
A comparison of the results in Table 10 shows that, across the four responses, either 2ܴܴܯ௥௔௡௞ or 2ܴܴܯା௩௘  gives best 
value of each statistics including PRESS** criterion (except for ݕସ) and very outstanding values of the coefficient of 
variation (ܴଶ)  and the adjusted coefficient of variation (ܴ஺ௗ௝

ଶ ). 
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Fig. 5. Plots of model residuals for the minced fish data. 
 
Again, the plots of the residuals of each model in Figure 5 reveals that those from both 2ܴܴܯ௥௔௡௞ and 2ܴܴܯା௩௘ 
overlap in virtually at all data points but are closest to the zero residual line across the four parameters of surface 
roughness. This further indicates that both 2ܴܴܯ௥௔௡௞ and 2ܴܴܯା௩௘ give comparatively better estimates of the data 
under study.   
 
Table 11. Optimal results of the models based on desirability function for the minced fish data. 
 
MODEL ݔଵ ݔଵ ݔଷ ݕොଵ ݕොଶ ݕොଷ ݕොସ ݀ଵ ݀ଶ ݀ଷ ݀ସ ܦ(%) 

OLS 0.3764 1.0 0.7155 1.9071 19.4993 17.2185 50.3018 0.9415 1.0000 0.8692 0.8866 92.3 
LLR - - - - - - - - - - - 0.0 

MRR2 0.3583 1.0 0.6731 1.8965 18.9967 18.0381 51.4267 0.8933 1.0000 0.6131 1.0000 86.0 
 96.9 1.0000 1.0000 1.0000 0.8816 51.2548 15.6267 19.5459 1.8939 0.6801 0.8438 0.3761 ࢑࢔ࢇ࢘૛ࡾࡾࡹ
 94.0 0.9387 1.0000 0.9989 0.8309 50.6137 16.7995 20.1610 1.8828 0.7846 1.0000 0.4763 ࢋ࢜૛ାࡾࡾࡹ
 
From the results in Table 11, it is seen that the 
comparatively better goodness of fit of 2ܴܴܯ௥௔௡௞ and 
 2ା௩௘ reflect in their ability to finding better settingsܴܴܯ
of the explanatory variables that optimize the four 
responses according to the production requirement of the 
study. In particular, 2ܴܴܯ௥௔௡௞gives the optimal setting 
of the explanatory variables that corresponds to the best 
desirability measure of 96.9%, indicating a product that 
meets approximately 97% of the production 
requirements. LLR gives a zero desirability measure 
because of the abysmally poor goodness of fit in ݕଶ and 
 .ଷݕ
  
Simulation data 
The simulation study focuses on how each of the models 
performs when random errors with different variance,  
 ଶ, are added to the responses generated from threeߪ
different underlying or specified polynomial models. In 
other words, the essence of the simulation is to 
investigate how each of the regression model fares in the 

presence of varying degree of deviation from the correct 
but unknown polynomial depicted by ݂ in equation (1). 
 
Each simulation comprises 500 data sets, each of which is 
based on the following underlying models: 
 
Underlying Model  I: 
௜ݕ = 25 − ௜ଵݔ13 + ௜ଵݔ19

ଶ + ௜ߝ , 
Underlying Model  II: 
௜ݕ = 42 + ௜ଵݔ12 − ௜ଶݔ5 − ௜ଵݔ15

ଶ − ௜ଶݔ7
ଶ + ௜ଶݔ௜ଵݔ8 + ௜ߝ , 

Underlying Model III:  
௜ݕ = 57 − ௜ଵݔ11 + ௜ଶݔ14 + ଷݔ10 + ௜ଵݔ15

ଶ − ௜ଶݔ6
ଶ −

௜ଷݔ10
ଶ − ௜ଶݔ௜ଵݔ5 − ௜ଷݔ௜ଶݔ12 − ௜ଷݔ4 +   ,௜ߝ

 
where ݔ௜ଵ, ݔ௜ଶ, and ݔ௜ଷ, ݅ = 1,2, … , ݊, are the respective 
values of the explanatory variables ݔଵ, ݔଶ and ݔଷ from the 
coded values of the explanatory variables in Table 6 or 
Table 9, ߝ௜, ݅ = 1,2, … , ݊, is the ݅௧௛ value of the normally 
distributed random error, ࢿ with mean 0 and variance 
= ,0)ܰ~ࢿ ଶ , that isߪ  ଶ). For each of the 500 data setsߪ
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from each of underlying models, ߪଶ varies from 1, 4, 9, 
16, 26 and 36. 
 
In the modeling of RSM data, it is highly desirable that 
the fitted curve approximates the underlying model as 
precisely as possible (He et al., 2012). Because we know 
the true model in this study, the best criterion for 
comparing the performance or reliability of each 
regression model would be the average Sum of Squared 

of Errors (AVESSE) of the fitted response from the true 
response. The AVESSE represents how well each 
regression model estimates or predicts the true raw 
response generated by the underlying model. 
 
Hence, the average SSE, (AVESSE), given by each 
regression model using each 500 data sets generated from 
each underlying model at different random error variance 
is presented in Table 12. 

 
 Table 12. AVESSE of each  regression model for each underlying model of the simulated data. 
 

Underlying Model ߪଶ(ߝ) OLS LLR MRR2 ࡾࡾࡹ૛ࡾࡾࡹ ࢑࢔ࢇ࢘૛ାࢋ࢜ 

Model I 

1.0 1.1577 8.1479 1.0125 0.0630 0.0455 
4.0 4.7250 11.6464 4.3520 0.2453 0.2318 
9.0 10.5933 16.6931 8.7604 0.5527 0.6423 

16.0 18.7742 23.8695 16.1778 0.9896 0.9118 
25.0 29.9152 36.1598 26.3740 1.4454 1.4910 
36.0 42.0129 46.4201 37.9899 2.0980 2.6103 

Model II 

1.0 0.9102 7.7899 0.7173 0.0454 0.0555 
4.0 3.6423 10.2112 3.3339 0.2716 0.2251 
9.0 8.3273 14.5293 6.5257 0.4012 0.5127 

16.0 14.8887 21.5428 11.9975 0.8586 0.9764 
25.0 22.9982 28.5557 21.2238 1.5920 1.4375 
36.0 32.5948 37.6278 25.8134 2.4598 2.1265 

Model III 

1.0 0.5846 11.8118 0.3280 0.0232 0.0804 
4.0 2.2593 13.5938 1.2999 0.2988 0.3449 
9.0 5.2867 15.7548 2.7279 0.6588 0.6284 

16.0 9.4035 19.0534 5.3636 1.0648 1.2683 
25.0 14.4029 23.2839 7.3554 2.5551 2.4341 
36.0 21.0174 27.8234 10.6717 2.8827 3.5001 

 
Again, the results from Table 12 reveals the best AVESSE for each underlying models across all the values of the 
random error variance are either given by 2ܴܴܯ௥௔௡௞ or 2ܴܴܯା௩௘. 
This confirms that the robustification of the kernel weights impact significantly on the performance of the MRR2 model. 
 
CONCLUSION 
 
In this study, we proposed the robustification of the 
Gaussian kernel weights that can be utilized by the LLR 
portion for improved performance of MRR2 and 
presented two different methods of transforming the 
residuals from the OLS component in order to achieve the 
robustification. Several data, including those generated 
from real life experiments involving multiple response 
surface roughness, were analyzed to validate the impact 
of the proposed robustification on the performance of 
MRR2. Comparisons of the overall performance of the 
MRR2 that utilizes the robustified kernel weights and that 
of its competitors (OLS, LLR and MRR2 that utilizes 
existing kernel weights) in terms of goodness of fit 
(Tables 7, 10 and 12), optimal solutions based on the 
desirability function (Tables 8 and 11) and plots of 
residuals from each regression model (Figures 4 and 5) 
clearly show that the robustified kernel weights 

significantly improves the fortunes of the MRR2. 
Specifically, the optimal cutting speed, feed rate and 
depth of cut found to be 254.3979m/min, 0.1774mm/rev 
and 0.4388mm, respectively, corresponding to an 
outstanding desirability of 99.4% will be of a very high 
practical relevance in the machining industries where 
mild steel (EN10) material is used. This finding will 
guarantee a more judicious use of material and machine 
tools and leads to improved returns to overall capital 
investments in the industries. 
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